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We summarize the primary techniques we have obtained to compute path integrals.

Definition 1. (Path Integrals via Parameterization)
Let D be an open connected subset of C and let f : D → C. Let γ : [a, b]→ D be a piecewise smooth path.
The path integral of f along γ is defined to be∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt.

Result 1. (Parameterizations)
We will use the following parameterizations.

• Let z1, z2 ∈ C. The line segment from z1 to z2 is parameterized as

γ : [0, 1]→ C given by γ(t) = z1 + (z2 − z1)t.

• Let z0 ∈ C and r > 0. The circle of radius r about z0 is parameterized as

γ : [0, 2π]→ C given by γ(t) = z0 + reit,

where eit = cis t = cos t+ i sin t.

Result 2. (Properties) Path integration admits the following properties.

• Path integrals are independent of parameterization. Recall that a contour is the image of a piecewise
smooth path. Thus if C is a contour and α and β are paths whose image is C, we have∫

α

f(z) dz =

∫
β

f(z) dz.

Thus we may simply write
∫
C
f(z) dz for the quantity above.

• Contours are oriented. If −C denotes the contour C except parameterized in the opposite direction,
then ∫

−C
f(z) dz = −

∫
C

f(z) dz.

• Contours may be concatenated or decomposed. If C1 ends where C2 begins, and C1 + C2 denotes the
contour that follows C1 and then C2, we have∫

C1+C2

f(z) dz =

∫
C1

f(z) dz +

∫
C2

f(z) dz.

• Path integrals are linear. That is, if a, b ∈ C are constants,∫
C

af(z) + bg(z) dz = a

∫
C

f(z) dz + b

∫
C

g(z) dz.

• Path integrals produce arclength. If the path γ parameterizes the contour C, the arclength of C is

L =

∫
C

|γ′(t)| dt.

• Path integrals are bounded. In fact, ∣∣∣ ∫
C

f(z) dz
∣∣∣ ≤ LM,

where L is the arclength of C, and M is the maximum modulus of f along the contour C.



Result 3. (Logarithms) Let C be a positively oriented circle centered at z0 ∈ C. Then∫
C

1

z − z0
dz = 2πi.

Result 4. (Primitives) Let D be an open connected subset of C and let f : D → C admit a primitive F
on D. If C is a contour in D from z1 to z2, then∫

C

f(z) dz = F (z2)− F (z1).

In particular, if C is a closed contour in C, then∫
C

f(z) dz = 0.

Moreover, the converse is also true: if
∫
C
f(z) dz = 0 for every closed contour C in D, then f admits a

primitive in D.

Result 5. (Power functions) Let C be a positively oriented circle centered at z0 ∈ C, and let k ∈ Z.
Then ∫

C

(z − z0)k dz =

{
2πi if k = −1 ;

0 if k 6= −1 .

Result 6. (Cauchy-Goursat) Let D be an open connected subset of C and let f : D → C be analytic.
Suppose that α and β are paths from z1 to z2 in D which are homotopic in D. Then∫

α

f(z) dz =

∫
β

f(z) dz.

Result 7. (Rational Functions) Let f(z) be a rational function. Let z1, z2, . . . , zn denote the poles of f
of multiplicity 1. Then

f(z) = g(z) +

n∑
j=1

Ai
z − zj

,

where g(z) is either a polynomial or a rational function whose poles have multiplicity exceeding 1. Let C be
an closed curve in C. Then ∫

C

f(z) dz = 2πi

n∑
j=1

Ajn(C, zj),

where

n(C, zj) =
1

2πi

∫
C

1

z − zj
dz

is the winding number of C about zj .

Result 8. (Cauchy’s Integral Formula) Let D be an open connected set and let f : D → C. Let C be
a simple closed curve in D such that f is analytic on and inside C. Let z0 be inside C. Then

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz.

Result 9. (Cauchy’s Integral Extension) Let D be an open connected set and let f : D → C. Let C
be a simple closed curve in D such that f is analytic on and inside C. Let z0 be inside C and let n be a
positive integer. Then the nth derivative of f exists at z0, and

f (n)(z0) =
n!

2πi

∫
C

f(z)

(z − z0)n+1
dz.


